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Abstract A multi-objective genetic algorithm is intro-

duced to predict the assignment of protein solid-state NMR

(SSNMR) spectra with partial resonance overlap and

missing peaks due to broad linewidths, molecular motion,

and low sensitivity. This non-dominated sorting genetic

algorithm II (NSGA-II) aims to identify all possible

assignments that are consistent with the spectra and to

compare the relative merit of these assignments. Our

approach is modeled after the recently introduced Monte-

Carlo simulated-annealing (MC/SA) protocol, with the key

difference that NSGA-II simultaneously optimizes multiple

assignment objectives instead of searching for possible

assignments based on a single composite score. The mul-

tiple objectives include maximizing the number of con-

sistently assigned peaks between multiple spectra (‘‘good

connections’’), maximizing the number of used peaks,

minimizing the number of inconsistently assigned peaks

between spectra (‘‘bad connections’’), and minimizing the

number of assigned peaks that have no matching peaks in

the other spectra (‘‘edges’’). Using six SSNMR protein

chemical shift datasets with varying levels of imperfection

that was introduced by peak deletion, random chemical

shift changes, and manual peak picking of spectra with

moderately broad linewidths, we show that the NSGA-II

algorithm produces a large number of valid and good

assignments rapidly. For high-quality chemical shift peak

lists, NSGA-II and MC/SA perform similarly well.

However, when the peak lists contain many missing peaks

that are uncorrelated between different spectra and have

chemical shift deviations between spectra, the modified

NSGA-II produces a larger number of valid solutions than

MC/SA, and is more effective at distinguishing good from

mediocre assignments by avoiding the hazard of subopti-

mal weighting factors for the various objectives. These two

advantages, namely diversity and better evaluation, lead to

a higher probability of predicting the correct assignment

for a larger number of residues. On the other hand, when

there are multiple equally good assignments that are sig-

nificantly different from each other, the modified NSGA-II

is less efficient than MC/SA in finding all the solutions.

This problem is solved by a combined NSGA-II/MC

algorithm, which appears to have the advantages of both

NSGA-II and MC/SA. This combination algorithm is

robust for the three most difficult chemical shift datasets

examined here and is expected to give the highest-quality

de novo assignment of challenging protein NMR spectra.

Keywords Sequential resonance assignment �
Protein structure determination � Solid-state NMR �
Magic-angle spinning � Linewidths

Introduction

Resonance assignment of solid-state NMR (SSNMR)

spectra of uniformly or extensively labeled proteins is a

prerequisite for full structure determination (Comellas and

Rienstra 2013; Luca et al. 2003; McDermott 2009). A set

of 2D and 3D magic-angle-spinning (MAS) correlation

experiments have now been well established on model

proteins with high structural order (Böckmann et al. 2003;

Castellani et al. 2002; Franks et al. 2005; Igumenova et al.
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2004) and have been applied to structurally unknown

proteins (Loquet et al. 2012; Wasmer et al. 2008). How-

ever, for disordered membrane proteins (Hong et al. 2012;

Li et al. 2008) and fibrous proteins (Tycko 2011), and for

ordered but large proteins (Bertini et al. 2010; Shi et al.

2009), resonance overlap, protein motion and disorder still

present significant challenges to SSNMR-based structure

determination.

In general, NMR spectra with broad linewidths and

resonance overlap can have more than one assignment

solution. Moreover, certain segments of the protein can be

conformationally polymorphic and hence can give rise to

multiple peaks per atom. Manual assignment is usually

ineffective for identifying all possible assignments in this

type of experimental spectra. While various automated

solution NMR resonance assignment programs have been

reported, the majority of these programs were intended to

rapidly assign a large number of cross peaks in multiple

high-resolution 2D, 3D and 4D spectra (Baran et al. 2004;

Bartels et al. 1996; Buchler et al. 1997; Hyberts and

Wagner 2003; Leutner et al. 1998; Moseley et al. 2001;

Schmidt and Guntert 2012). Only a few automated solution

NMR assignment programs so far directly address the issue

of assignment ambiguity and missing peaks (Coggins and

Zhou 2003; Olson and Markley 1994).

To assign SSNMR MAS spectra, which usually have

lower resolution than solution NMR spectra, Tycko and

coworkers recently introduced a Monte-Carlo simulated-

annealing (MC/SA) program (Hu et al. 2011a, b; Tycko

and Hu 2010). This program searches for all allowed

sequential assignments that are consistent with the amino

acid types attributed to each recorded spin system and that

are within the linewidths of the peaks. A generalized MC/

SA algorithm, MCASSIGN2, optimizes the assignment by

maximizing a score function S, which is defined to reward

good connections (Ng) between different spectra and the

number of used peaks (Nu), and to penalize bad connec-

tions (Nb) and ‘‘edge’’ assignments (Ne). The good, bad and

edge connections have been defined in the original papers;

briefly, they designate assignments of a residue that have

consistent chemical shifts between different peak lists

(good connections), that have mismatched chemical shifts

between different peak lists (bad connections), and that

either miss the peak in one of the spectra or cannot be

tested for consistency because the neighboring residue’s

peaks are missing (edges). The S score encapsulates these

four objectives through four user-defined weighting fac-

tors, w1 - w4:

S ¼ w1Ng � w2Nb � w3Ne � w4Nu: ð1Þ

The MC/SA algorithm searches for all possible

assignments that satisfy the peak lists within the specified

linewidths, evaluates the goodness of each assignment in

terms of S, and improves the solutions in the direction of

maximum S. Solutions with Nb = 0 are considered valid,

while solutions with Nb = 0 violate the data and should be

discarded by the user.

The MC/SA algorithm has been successfully applied to

not only model proteins with microcrystalline order but

also amyloid proteins with intrinsic disorder (Hu et al.

2011a, b; Tycko and Hu 2010), and is found to be effective

in preventing assignment solutions to be trapped in a local

optimum. However, the algorithm also has some weak-

nesses. First, MC/SA is not efficient in finding many dif-

ferent solutions because each run yields one assignment

and there is no mechanism to prevent independent runs

from giving the same results. Thus, a large number of runs

are needed to obtain sufficiently diverse solutions. More

importantly, the S score turns the inherently multi-objec-

tive problem into a single-objective problem, which can

eliminate some good solutions while retaining inferior

ones. Because the single score depends on the choice of the

weighting factors, if the weighting factors are not chosen

optimally for a specific dataset, the algorithm may end up

with some invalid solutions or solutions that are not the

best. For example, if we use the standard recommended

maximum values of w1 = 10, w2 = 20, w3 = 3, and

w4 = 1, two assignments with (Ng, Nb, Ne, Nu) values of

(66, 1, 31, 82) and (64, 0, 34, 81) would have scores of 629

and 619, so the search process will attempt to change the

second assignment towards the first to reach a higher score

and thus move away from the valid (Nb = 0) solution.

Although this problem can be ameliorated by changing the

weighting factors, for example by increasing w2 to penalize

bad connections, the choice of the weighting factors

requires prior knowledge of the protein structure and

chemical shifts.

In general, the presence of multiple objectives in an

optimization problem should produce multiple optimal

solutions. In engineering and computer science, these

multiple optimal solutions are known as Pareto-frontier

solutions or Pareto-order-1 solutions (Deb et al. 2002). A

number of multi-objective evolutionary algorithms

(MOEAs) have been developed in the last decade to find as

many Pareto-frontier solutions as possible (high diversity),

in as short a time as possible (fast convergence speed), and

in a single simulation run (Knowles and Corne 2000). To

better reflect the multi-objective nature of NMR resonance

assignment, we now adapt and improve one of the widely

used MOEAs, the non-dominated sorting genetic algorithm

II (NSGA-II) (Deb et al. 2002). NSGA-II is a fast and

‘‘elitist’’ genetic algorithm that produces a large spread of

solutions and has fast convergence towards the Pareto

frontier in various problems. An elitist strategy in the

evolution process refers to the fact that the best individuals

are always chosen for the next iteration step. Figure 1
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illustrates the principle of the non-dominated sorting

approach to find different Pareto orders, using a dual-

objective problem as an example. The statement that

solution B is dominated by solution A means that no

objective value of B is better than A, and at least one of the

objective values is worse for B than for A. Conversely, the

statement that a solution B is not dominated by solution A

means that at least one objective value of B is better than

A, or all objective values are equal between B and A (while

the two solutions still remain distinct in content). Non-

dominated sorting searches for solutions that are not

dominated by any other solutions, which are Pareto-order-1

solutions. In Fig. 1, 6 solutions have Pareto-order 1, and

are equally optimal. Pareto-order-2 solutions are only

dominated by the Pareto-frontier solutions and can be

found after the Pareto-frontier solutions are removed from

the search pool. Pareto-order-3 solutions are only domi-

nated by Pareto-order-2 and Pareto-order-1 solutions, and

so on.

The standard NSGA-II algorithm works in the following

way (Deb et al. 2002). First, a group of N distinct indi-

viduals (e.g. assignments) are randomly generated as the

parent population P0. Each individual in P0 is evaluated for

its ‘‘fitness’’; those with lower Pareto order or better ‘‘fit-

ness’’ will have a higher probability to transfer their

‘‘genes’’ to the next generation. From the parent genera-

tion, N1 individuals (N1 B N) are chosen based on the

fitness and changed using crossover and mutation operators

(see Supplementary Information) to create a new set of N

individuals that are different from each other and from

those in the parent population P0. These new individuals

constitute the offspring generation Q0. The parent and

offspring populations are combined to create 2N individ-

uals, which are sorted according to their Pareto order, and

the ‘‘crowding distances’’ between them are calculated.

The N individuals with the lowest Pareto orders and

maximal crowding distances are chosen to form a new

generation P1. This process is repeated until the generation

number reaches the specified number. Thus, by design,

NSGA-II requires all individuals of the population to be

different. The number of comparisons required to sort

individuals into different Pareto orders scales as BN2,

where B is the number of objectives.

In this paper, we introduce a modified NSGA-II algo-

rithm and a combined NSGA-II/MC algorithm for reso-

nance assignment of protein NMR spectra. We test these

two algorithms and compare their performances with MC/

SA using published SSNMR protein chemical shift datasets

with varying degrees of imperfection. Compared to manual

assignments, the automated assignment strategies descri-

bed here aim at generating a complete set of assignment

solutions that are consistent with the data, and analyzing

these solutions to obtain the probabilities of the assign-

ments. Thus, we compare MC/SA and the two NSGA-II

based algorithms on both the ‘‘correctness’’ and ‘‘com-

pleteness’’ of the possible assignment solutions. For high-

quality peak lists, we find that all algorithms perform

similarly well. But for difficult datasets containing missing

peaks, large numbers of residues, and non-negligible

chemical shift deviations between multiple spectra, the

modified NSGA-II and the combination NSGA-II/MC

algorithm show significant advantages in assignment

diversity and accuracy over the MC/SA algorithm. In the

three most difficult datasets, the combination algorithm

consistently shows excellent and stable performances, and

is thus most promising for de novo assignment of chal-

lenging protein MAS NMR spectra.

Methods

The NSGA-II and combination NSGA-II/MC programs are

written in Fortran 95. The input for the two programs,

similar to the MCASSIGN2 program, includes the amino

acid sequence, peak lists of different spectra, and a con-

nection table that specifies the relative residue number of

the chemical shifts from different spectra. The sequence

file contains the single-letter amino acid code of the protein

sequence. The peak lists contain all the correlated chemical

shifts observed in each spectrum and the corresponding

half-widths at half maximum. In the Supplementary

Information the peak lists for all six protein datasets

(Tables S1–S7) used in this work are provided. The first

line of each peak list gives the total number of peaks (i.e.

the number of rows in the table) and the number of

chemical shift columns. Values larger than 2,000 indicate

no chemical shifts; these entries are left blank in Tables

Fig. 1 Principle of NSGA-II and Pareto orders for multi-objective

optimization. Four Pareto orders in a two-objective maximization

problem are illustrated. Shaded area contains the dominated solutions
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S1–S7 for clarity. The last numerical column indicates

peak degeneracy, which is unity here but can be a larger

number to represent overlapped peaks. The last column of

the peak lists contains the possible residue types. We use

the PLUQ algorithm that we developed recently (Fritzs-

ching et al. 2013) to predict amino acid types as well as

their likely secondary structures based on the PACSY

protein chemical shift database (Lee et al. 2012). The

secondary structure is denoted as C for coil, S for b-strand,

and H for helix. NSGA-II still works without the secondary

structure information, but its use allows the user to check

whether an assignment is reasonable based on whether a

sufficiently long segment of residues show the same sec-

ondary structure motif.

The connection table describes how the residue numbers

from different spectra are shifted relative to each other. Our

connection table differs slightly from that of MCASSIGN2,

by giving one column for each peak list. Table 1 shows an

example of a connection table for two peak lists, NCACX

and NCOCX, where each list contains 3 chemical shift col-

umns, N, CA and CB, in that order. The three rows of the

connection table refer to the three chemical shifts. The first 2

columns of the table give the identity of the two peak lists,

which is 1 for NCACX and 2 for NCOCX. The next two

columns refer to the chemical shift columns in each peak list,

and are (1 2 3). The 5th and 6th columns give the residue shift

indices. By default, the residue number is defined with

respect to the CA atom. We set the indices to (0 0 0) for

NCACX in the 5th column. Since the NCOCX spectrum

gives inter-residue cross peaks whose CA and CB chemical

shifts belong to the ith residue while the 15N chemical shift

belongs to the i ? 1th residue, the NCOCX indices in the 6th

column are (1 0 0). If a CONCX peak list is included, and the

three chemical shifts are N, CA, and CO, then the indices

would be (0 0 -1) for the CONCX peak list.

The two NSGA-II based programs also constrain the resi-

due of every atom to be within the input sequence, in order to

correctly treat the assignment of N- and C-terminal residues in

inter-residue correlation spectra. The C-terminal residue

cannot contribute any cross peaks in the NCOCX spectrum

due to the lack of the next 15N atom, so any assignment of the

NCOCX peak list that contains the C-terminal residue is a bad

connection. Similarly, any peak in the CONCA spectrum

assigned to the N-terminal residue is a bad connection. This

penalty of the N- and C-terminal residue assignment prevents

some trivial wrong assignments.

To test the performance of NSGA-II and the combina-

tion algorithm, we used the 13C and 15N chemical shifts of

four proteins: GB1 (Franks et al. 2005), HET-s (BMRB

11064) (Wasmer et al. 2008), sensory rhodopsin (BMRB

18595) (Shi et al. 2011) and HNP-1 (Zhang et al. 2010).

For the first three proteins, we created input NCACX and

NCOCX peak lists by modifying the reported chemical

shifts randomly by 0.3–0.4 ppm. For HNP-1, the chemical

shifts were directly read off from the 3D NCACX and

NCOCX spectra. The HNP-1 peak lists are imperfect,

because the 3D spectral linewidths are not very narrow

(FWHM 0.6–2 ppm), and 2D 13C–13C correlation spectra

were not consulted in generating the peak lists.

For MC/SA simulations, 100 independent runs were

conducted for each dataset. The ranges of the weighting

factors are 0–10 for w1, 0–20 for w2, 0–3 for w3, and 0–1 for

w4. The number of simulated-annealing steps (NS) during

which the weighting factors vary is 20, except for the case

of GB1 with random and independent deletion of 20 % of

the peaks, where NS was set to 30. The number of assign-

ment change (Na) per simulated-annealing step is 106.

For NSGA-II simulations, the number of individuals in

each generation (i.e. group number) was 100. NS denotes

the number of lucky-ratio variations (see below) and was

set to 20. The number of generations (Na) per lucky ratio is

104. The total number of generations is the product of NS

and Na and is thus 2 9 105. The results of 1 run containing

2 9 105 generations of 100 distinct individuals are shown.

The combination NSGA-II/MC simulations were con-

ducted for the three most difficult datasets, which are GB1

with random and independent peak deletion, sensory rho-

dopsin, and HNP-1. NS was set to 20, the number of MC

attempts per step was 104 for HNP-1 and 105 for GB1 and

sensory rhodopsin, and the number of NSGA-II attempts

per step was 103.

For 100 runs of MC/SA, all results with Nb = 0 (i.e.

valid solutions) are evaluated. Among these only a subset

of results are distinct. We report the number of valid

solutions (Ntotal) and the number of distinct solutions for

each case. The modified NSGA-II and the combination

algorithm produce 100 valid and distinct solutions in one

run. Among these, Pareto-order-1 solutions are chosen

based on four criteria, (Ng, Nb, Nu, S0), as described below.

We compare the predicted assignments with the ‘‘true

assignment’’ obtained manually or from the original

BMRB data. When the highest-probability predicted

assignment for a peak differs from the ‘‘true assignment’’,

we call it a ‘‘mis-assignment’’. Since the input chemical

shift lists used for automated assignments are purposefully

made incomplete to mimic the situation of missing peaks in

the spectra due to protein motion or broad linewidths, such

Table 1 Connection table for an NCACX peak list (1) and an

NCOCX peak list (2), each with three chemical shift columns: N, CA,

and C

3

1 2 1 1 0 1

1 2 2 2 0 0

1 2 3 3 0 0

284 J Biomol NMR (2013) 57:281–296

123



‘‘mis-assignments’’ are partly a result of the imperfect peak

lists. However, even with the imperfect peak lists, the two

NSGA-II based algorithms are more robust than MC/SA, in

that they find the manual assignment with higher proba-

bilities. This is due to the diversity of the solutions found

by the genetic algorithm and the better evaluation process

by the multi-objective optimization protocol.

The assignments are analyzed in terms of the probability

ptop that the top assignment for each residue is found within

Ntotal valid solutions:

ptop ¼
Ntop

Ntotal

ð2Þ

where Ntop is the number of times the top assignment is

found. This ptop is compared to the probability that the true

assignment is found.

Resonance assignment using NSGA-II

The modified NSGA-II

Our NSGA-II method is modified from the original method

to tailor to the needs of protein NMR resonance assign-

ment. The evolution process adopts four criteria, (Ng, Nb,

Nu, S), where S is a composite score that implicitly

accounts for edge assignments:

S¼ rlucky � randþð1� rluckyÞ � ð10Ng�20Nb�3NeþNuÞ:
ð3Þ

Here rlucky is a lucky ratio and rand is a random number,

the product of which gives a ‘‘lucky number’’. For each

individual (i.e. possible assignment), a random number is

generated. If an individual has a high ‘‘lucky number’’,

then S may be sufficiently high that this solution can

become one of the Pareto-frontier solutions even if the

other criteria values are not optimal. The solutions with the

best Ng, Nb, and Nu values but worse S score still remain in

the Pareto frontier because no other individuals can

dominate these values. This strategy reduces the

possibility that NSGA-II is trapped in a local optimum.

The value of the lucky ratio is allowed to change from 0 to

1 between each of the NS steps. A larger lucky ratio means

the evaluations of the individuals are more dependent on

their ‘‘luck’’ and less dependent on their real fitness.

There are many ways to define rlucky. We chose a

Gaussian function

rlucky ¼ e�
1

10
ðns�Ns=2þ2Þ2 : ð4Þ

where ns is the step counter and NS is the number of lucky-

ratio variations, which is 20. At the beginning and end of

the evolution, rlucky is close to 0, thus the original NSGA-II

is conducted. In the middle of the evolution, when ns is

near 8, the lucky ratio is close to 1, which allows more

random variation of the solutions. The Gaussian function is

centered at ns = 8 instead of 10 to better revert the

simulations to the original NSGA-II by the end of the

evolution. rlucky is defined in this way so that the

competition between individuals is more intense (small

rlucky value) at the beginning of the evolution to quickly

converge to good results, less intense (large rlucky value) in

the middle of the evolution so that the group members have

a higher probability to escape local optima, and more

intense again at the end of the evolution so that the

solutions are evaluated mainly on their fitness rather than

luck. When rlucky = 0, the score becomes

S0 ¼ 10Ng � 20Nb � 3Ne þ Nu: ð5Þ

and the four criteria become (Ng, Nb, Nu, S0).

Table 2 shows an example of the advantage of these

four criteria for comparing the relative merit of assignment

results. If the standard MC/SA criteria of (Ng, Nb, Ne, Nu)

are used for non-dominated sorting, then solutions A, B

and C will have the same Pareto order. However, among

these three results, C has much lower Ng and Nu values

than A and B, indicating fewer peaks that are consistently

assigned between spectra and fewer used peaks. These poor

Ng and Nu values are compensated by a low Ne value,

which makes C a non-dominated solution. But Ng is usu-

ally more important than Ne, since edges can be valid due

to molecular motion. So C is effectively an incomplete

assignment and should be considered inferior to A and B.

On the other hand, solutions A and B both have high and

identical Ng values but slightly different Ne and Nu values.

Either result can be the true assignment and should be

considered equally good. The choice of (Ng, Nb, Nu, S0) as

the four evaluation criteria achieve the purpose of keeping

A and B in Pareto-order 1 while sorting C as dominated by

A and B.

This example also illustrates the point that not all assign-

ments that are valid (i.e. Nb = 0) have the same merit. The

MC/SA algorithm does not have a mechanism to discard

inferior solutions. After 100 MC/SA runs many valid but poor

assignments can be generated that reduce the confidence of

assignment prediction, as we found for HNP-1 and the most

imperfect of three GB1 datasets.

Table 2 Comparison of the objective values and scores of three

hypothetical solutions using the original and modified NSGA-II

Ng Nb Ne Nu Pareto

order

S0 Modified

Pareto order

A 66 0 38 86 1 632 1

B 66 0 42 88 1 622 1

C 58 0 20 80 1 600 2

S0 is calculated using Eq. (5)
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Figure 2 shows a flowchart of the modified NSGA-II.

Two points are noteworthy. First, to make changes to the

parent generation, we use a crossover operator, which uses

two individuals to generate two offspring, and a mutation

operator, which uses one parent to generate one offspring.

Second, in the final group of solutions, all results with

Nb = 0 will be discarded because they directly contradict

the measured chemical shifts. So during the final step of

evolution, we use a restricted Pareto-order strategy that

makes all solutions converge to Nb = 0. If solution A has an

Nb value larger than that of solution B, then A is dominated

by B; but if A and B has the same Nb value, then the

dominance relationship depends on the values of the other

objectives. In this way, the final results will rapidly converge

to Nb = 0. This restricted Pareto-order strategy is only used

in the final few (typically 2) steps of evolution, while the rest

of the evolution process involves unrestricted sorting of the

Pareto order. The parameter ‘‘num_free’’ (0 B num_

free B NS) denotes the number of steps involving unre-

stricted sorting of Pareto orders. When ns [ num_free, the

restricted sorting of Pareto order is used.

The combination NSGA-II/MC algorithm

When multiple good assignments are quite different from

each other, NSGA-II can be trapped into one of the good

solutions and may not find all others. To address this issue, we

developed a combination NSGA-II/MC algorithm (Fig. 3).

Here, in each of the NS steps of evolution, each individual first

has NMC Monte-Carlo attempts, where the score defined in

Eq. 1 is used to evaluate the fitness. Subsequently, NGA

attempts of NSGA-II is used to make these group members

compete with each other. The best individuals, as judged by

(Ng, Nb, Ne, Nu), have their ‘‘genes’’ pass into the next gen-

eration. Thus, the Monte-Carlo process gives each individual

opportunity to evolve and allow them to jump out of local

optima, while the NSGA-II process makes the group of

individuals rapidly converge to Pareto-frontier solutions.

When NMC is set to 0, the program reverts to the modified

NSGA-II; if NGA is set to 0, then the program reverts to the

MC/SA algorithm but with 100 distinct solutions in one run.

Different attempt numbers can be tested. Based on our

experience, NMC = 104–105 and NGA = 103 work well.

Input: amino acid sequence, chemical 
shift peak lists, and connection table; 
set group size N, number of steps NS, 
number of attempts Na, etc.

Initialize: randomly generate N sets of 
assignment to form the parent group; set 
ns and na to 0.

Gene Pool: sort according to Pareto 
order and crowding distance. Choose 
N1 best individuals for the gene pool. 

Generate offspring: randomly choose 
assignments from the Gene Pool and 
use crossover and mutation operators to 
generate N new assignments; verify that 
the offspring assignments differ from 
each other and from the assignments in 
the parent group.

Combine parent & offspring groups to 
generate a new group of 2N 
assignments. ns > num_free?

Restricted Pareto 
order on the new 
group

Start

Unrestricted 
Pareto order on 
the new group.

Elitism: choose N assignments with the 
lowest Pareto orders and largest crowding 
distances to form a new group. 

Increase attempt 
counter na by 1 na = Na?

Increase step 
counter ns by 1

ns = NS?

Set na = 0

Output results 
Stop 

No 

yes 

No 

Yes 

No Yes 

Fig. 2 Flowchart for the modified NSGA-II resonance assignment method

286 J Biomol NMR (2013) 57:281–296

123



Results and discussion

GB1 with consecutive deletion of 20 % of the residues’

chemical shifts

The 56-residue GB1 is one of the best microcrystalline

proteins for developing multidimensional SSNMR tech-

niques due to the extensive literature of Rienstra and

coworkers (Franks et al. 2008). We used the chemical

shifts published in reference (Franks et al. 2005) for the

assignment tests here. Fictitious NCACX and NCOCX

peak lists were generated by adding a random deviation of

0.3–0.4 ppm onto the reported chemical shifts. The com-

plete GB1 data have 56 and 55 peaks in the NCACX and

NCOCX lists, respectively, and can be assigned readily

using both NSGA-II and MC/SA (data not shown). Thus,

we increased the difficulty level by removing some of the

peaks. The choice of deleted peaks is designed to mimic

realistic situations where peaks can be missing due to

protein motion. As a first example, we deleted the peaks for

the three loops in GB1, which span residues 9–12, 20–22,

and 38–41 (Fig. S1a). Such loop residues are often

dynamic and can thus escape detection in cross-polariza-

tion (CP) based experiments at moderate temperatures.

Figure 4 compares the performance of MC/SA and

modified NSGA-II. All 100 runs of MC/SA gave valid

results, among which 2 solutions are distinct. 99 results

gave (Ng, Nb, Ne, Nu) values of (85, 0, 7, 89), while one

solution gave (84, 0, 9, 89). The two solutions differ from

each other at residues M1, K10 and E42: the first solution

has assignment for M1 and E42 but no assignment for K10,

while the second solution has assignment for M1 and K10

but null assignment for E42. Q2 and W43 show peaks in

both spectra, so the assignment of M1 and E42 can find

good connections. Thus, missing the assignment of E42 in

the second solution reduces Ng by 1. In comparison, G9 and

T11 peaks have been deleted from the lists, so the assign-

ment of K10 cannot be proved to be either right or wrong,

which leads to a higher Ne value for the second solution.

From one run of modified NSGA-II, we obtained a single

Pareto-frontier solution, which is the majority solution

found by MC/SA. Non-dominated sorting identified the

second solution as inferior. This case, while simple, shows

that when a protein contains a small number of dynamic

segments that do not give signals, as long as the rest of the

protein gives reliable chemical shifts that are consistent

among multiple spectra, the assignment is straightforward

and not more difficult than for a fully detected protein. Both

Input: amino acid sequence, chemical shift 
peak lists, connection table; set the 
program parameters. 

Initialize: randomly generate N 
assignments to form the parent group; set 
ns, nmc and nga to 0. 

Start

Increase attempt 
counter nga by 1 nga = NGA?

Increase step 
counter ns by 1

ns = NS?

Set nga = 0

Output assignments 
Stop 

Begin MC/SA: calculate w1, w2, w3 and w4
based on ns. 

MC/SA step: Randomly change each 
assignment in the parent group. 
Calculate the change in score S0 = w1Ng-
w2Nb-w3N3+w4Nu. Choose a random 
number x from 0 to 1. If exp(ΔS0) > x, 
then replace the original assignment by 
the new one; else keep the original 
assignment.  

Increase nmc by 1

nmc = NMC? Set nmc = 0

NSGA-II step: generate parent assignments; use 
mutation and crossover operators to generate 
offspring assignments; sort these by Pareto order, 
with or without Nb restriction according to ns. 

No 

Yes 

Yes 
No 

No 

Yes 

Fig. 3 Flowchart for the combination NSGA-II/MC resonance assignment method
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MC/SA and modified NSGA-II predicted the correct

assignment well, but NSGA-II showed a slight advantage of

sorting the valid solutions according to the Pareto order.

GB1 with random deletion of 20 % of the residues’

peaks

We next examined the case where the missing peaks are

randomly distributed in the protein sequence and thus

cause many more edge assignments. This situation could

arise from low sensitivity of the sample, line broadening of

certain residues by conformational disorder, intermediate-

timescale motion, or chemical exchange. We randomly

chose 12 residues (1, 5, 7, 13, 17, 18, 19, 22, 23, 46, 48, and

55) in GB1 and deleted their peaks in both the NCACX and

NCOCX lists.

Figure 5 shows the results of MC/SA and modified

NSGA-II simulations. Surprisingly, both methods produced

good assignments, with only one ‘‘mis-assigned’’ residue in

the NCACX dataset. MC/SA found 3 distinct solutions out

of 100 valid results: 96 results are identical, with (Ng, Nb,

Ne, Nu) values of (78, 0, 16, 86), while 4 results have

N-values of (77, 0, 14, 84) and contain 2 distinct solutions.

We call solution (78, 0, 16, 86) A and the other two

solutions B and C. Comparing A and B, A assigned I6

while B did not. Between A and C, A assigned D47 while

C has no assignment for D47. Thus, among the three

solutions, A is the most complete assignment. However, A

has only 86 used peaks out of 87 total. The missing peak is

that of the C-terminal residue E56 in the NCACX spec-

trum. Since T55 is deleted and the C-terminal residue does

not give signals in the NCOCX spectrum, the assignment

of E56 increases the edge number by 1 without adding a

good connection, thus worsening the score. Thus, the

assignment of E56 is eliminated as long as MC/SA chooses

(78, 0, 16, 86) as a better solution than a possible solution

with N-values (78, 0, 17, 87). Figure 5a shows that the

correct E56 assignment is never predicted by MC/SA.

In comparison, NSGA-II gave 3 Pareto-frontier results

within 100 distinct solutions. Two Pareto-order-1 solutions

have N-values of (78, 0, 18, 87), one of which is the correct

assignment. The other solution switched the E56 and E19

assignments because these two residues both have no

neighboring peaks due to deletion and no NCOCX peaks.

The third solution is the same as solution A from MC/SA.

In contrast to MC/SA, NSGA-II gives these three results

the same merit or Pareto order, thus predicting the correct

assignment of E56 with 33.3 % of the probability (Fig. 5b).

This test shows that even when many residues are not

detected in the spectra, as long as the same residues have

missing peaks in different spectra, the rest of the protein

can still be assigned relatively well using both NSGA-II

and MC/SA.

GB1 with random and uncorrelated deletion of 20 %

of the peaks in multiple datasets

Peaks can be missing or broadened in an uncorrelated fashion

between multiple spectra, due to resonance overlap with

different residues, incorrect grouping of peaks during manual

peak picking, or suboptimal experimental conditions. To

mimic this situation, we randomly deleted 20 % of the peaks

Fig. 4 Resonance assignment of GB1 with consecutive deletion of

20 % of the peaks. Only the NCACX assignment is shown; the

NCOCX prediction is similar. a MC/SA generated 100 valid results

containing 2 distinct solutions. b Modified NSGA-II produced a

single Parato-order-1 solution. The top panels show the probability of

the top assignment of each residue, and the bottom panels show the

peak number of the most probable assignment. The probability and

peak number of the predicted assignment (blue stars) are compared

with those of the true assignment (red circles). Note the y-axis scale

of the probabilities covers a very small range of 98–100 %, indicating

that both algorithms have very high assignment probabilities, and

both methods are 100 % accurate in the most probable predictions
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in the NCACX and NCOCX peak lists, but the deleted peaks

do not come from the same residues (Table S3). All three

algorithms were employed for this case, and the results are

shown in Fig. 6 and the N-values are listed in Table 3.

MC/SA found 56 valid assignments among which 43 are

distinct. The objective values of these 43 solutions are

more divergent than the previous two test cases: for

example, the number of good connections ranges from 65

to 62. The modified NSGA-II produced 100 valid and

distinct results with 54 Pareto-frontier solutions, all of

which have 65 good connections but differ in Ne and Nu.

The combination NSGA-II/MC algorithm yielded 80 Pa-

reto-order-1 solutions, with similar objective values as the

NSGA-II results. Interestingly, most (41 out of 56) of the

MC/SA solutions are dominated by the NSGA-II and

combination results based on the (Ng, Nb, Nu, S0) criteria.

Figure 6 compares the predicted assignments by the

three methods. For MC/SA, 4 residues are ‘‘mis-assigned’’

in each spectrum. For modified NSGA-II, the Pareto-

frontier solutions have 2 ‘‘mis-assigned’’ residues for the

NCACX list and only 1 ‘‘mis-assignment’’ for the NCOCX

list. The accuracy of the combination NSGA-II/MC is

similar to that of the modified NSGA-II.

In addition to higher accuracy, the NSGA-II and NSGA-II/

MC results are more predictive of ambiguous residues: the

‘‘mis-assigned’’ residues have low prediction probabilities

(20–50 %) while the high-probability assignments are always

correct (Fig. 6c–f). In comparison, MC/SA gave relatively

high probabilities of 50–100 % to the ‘‘mis-assigned’’ resi-

dues, while some correctly assigned residues have low pre-

diction probabilities (Fig. 6a, b). This poor ‘‘judgment’’ can be

traced to the treatment of edge assignment. Because the

missing peaks do not match between the two peak lists, the

already low value of w3 (0–3) turned out to be still too high for

this case. Table 3 shows that many MC/SA solutions com-

pensate for low Ng and Nu values by having low Ne values,

thus giving relatively high S0 scores. Similar to the example in

Table 2, it is more important to have many good connections

Fig. 5 Resonance assignment of GB1 with random deletion of 20 %

of the peaks. The deleted peaks come from the same residues between

the NCACX (a, c) and NCOCX (b, d) lists. a, b MC/SA generated

100 valid results containing 3 distinct solutions. c, d Modified NSGA-

II found 3 Parato-order-1 solutions. Both methods have one ‘‘mis-

assignment’’ in the NCACX dataset and have correct assignment of

all NCOCX peaks
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Fig. 6 Resonance assignment of GB1 with random and independent

deletion of 20 % of the peaks, which do not come from the same

residues between the NCACX (a, c, e) and NCOCX (b, d, f) datasets.

a, b MC/SA found 56 valid results, among which 43 are distinct. Four

residues are ‘‘mis-assigned’’ for each dataset. Various residues have

low probabilities for the top assignment, some of which are

nevertheless correct. c, d Modified NSGA-II found 54 Parato-frontier

solutions with 2 and 1 ‘‘mis-assignments’’. e, f The combination

algorithm found 80 Parato-order-1 solutions with 1 and 2 ‘‘mis-

assignments’’

Table 3 Assignment results of

GB1 with 20 % randomly and

independently deleted residues

S0 is calculated using Eq. (5).

Bold indicates rows that contain

the true assignment

Method # of evaluated results Ng Nb Ne Nu S0 # of

results

# of

distinct

solutions

MC/SA 56 valid results

(out of 100 runs)

65 0 34 82 630 6 5

65 0 35 83 628 9 6

64 0 32 80 624 1 1

64 0 33 81 622 9 6

64 0 34 81 619 10 10

64 0 35 82 617 3 3

63 0 31 79 616 8 3

63 0 32 79 613 1 1

63 0 33 80 611 7 6

62 0 29 77 610 1 1

63 0 34 80 608 1 1

NSGA-II 54 Pareto-frontier results

(out of 100 valid results)

65 0 35 83 628 4 4

65 0 39 85 618 26 26

65 0 41 86 613 20 20

65 0 43 87 608 4 4

NSGA2/MC 80 Pareto-frontier results

(out of 100 valid results)

65 0 35 83 628 4 4

65 0 37 84 623 20 20

65 0 39 85 618 32 32

65 0 41 86 613 20 20

65 0 43 87 608 4 4
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and many used peaks than to strive for fewer edges. Indeed,

when we set the maximum value of w3 to 0, thus no longer

penalizing edge assignments, then MC/SA gave more accu-

rate predictions (data not shown). Of course, for de novo

assignment, it is impossible to know whether missing peaks

are correlated or uncorrelated between spectra, thus it is

impossible to choose w3 optimally. The modified NSGA-II

algorithm avoids this dilemma altogether, since Ne is only one

of the evaluation criteria, implicitly accounted for through S,

thus NSGA-II can keep high-Ne outcomes as long as the other

objectives have non-dominated values. As a result, the two

NSGA-II methods gave high prediction probabilities for the

correctly assigned residues and low probabilities for the ‘‘mis-

assigned’’ residues, making the probability a reliable indicator

of the true assignment.

HET-s

We next predicted the assignment of the amyloid protein

HET-s, using the chemical shifts in the BMRB entry 11064

to generate the fictitious NCACX and NCOCX peak lists.

There are 57 peaks in NCACX and 55 peaks in NCOCX.

No chemical shifts are available for residues 1–5 and

35–42 in the original dataset.

Figure 7 compares the MC/SA and modified NSGA-II

results. Both algorithms performed similarly well, with

only 2 ‘‘mis-assigned’’ residues in each dataset by both

methods. MC/SA yielded 98 valid results that contain 4

distinct solutions, while NSGA-II yielded 4 Pareto-frontier

results that are identical to the MC/SA predictions. All four

results have N-values of (110, 0, 4, 112). The ‘‘mis-

assigned’’ residues are correctly reflected by their low

prediction probabilities. R22 and R58 have low probabili-

ties because the 15N chemical shifts of R22 and V23 are

similar to those of R58 and V59. The assignments of the

Ala triplet, A31–A32–A33 are also ambiguous, as expec-

ted. Moreover, the 15N chemical shift difference between

A31 and A33 and between A33 and L34 are within the

linewidths. Thus the A31–A32 chemical shifts cannot be

easily distinguished from the A32–A33 chemical shifts.

Fig. 7 Resonance assignment of HET-s a, c NCACX and b,

d NCOCX spectra. a, b MC/SA found 98 valid results containing 4

distinct solutions. c, d Modified NSGA-II produced 4 Pareto-order-1

solutions. The two methods performed equally well, with only 2

‘‘mis-assignments’’ in each dataset
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Sensory rhodopsin

We next considered the assignment of a relatively large

protein sequence to investigate how MC/SA and NSGA-II

algorithms handle increased chemical shift overlap and the

presence of identical residue pairs in the sequence. We

chose the predominantly a-helical sensory rhodopsin

(BMRB 18595), but truncated its size to the first 98-resi-

dues, which correspond to the first three transmembrane

helices (Fig. S1b). The use of the chemical shifts of the

entire 236-residue protein resulted in poor predictions by

all methods (data not shown). The peak lists contained 87

spin systems in NCACX and 82 spin systems in NCOCX

(Table S6).

MC/SA found 100 valid results with 33 distinct solu-

tions, out of which the 23 highest-scoring results have

N-values of (164, 0, 10, 169). The modified NSGA-II

produced 8 Pareto-order-1 solutions, all of which have the

same N-values as the top MC/SA result. The combination

program yielded 24 Pareto-order-1 solutions with the same

N-values (Table 4). Additional runs of NSGA-II and the

combination algorithm did not generate more Pareto-fron-

tier solutions, suggesting that the 24 solutions are the

complete set of Pareto-frontier solutions.

It is noteworthy that MC/SA found more solutions than

modified NSGA-II for this case. The reason is that among

the 24 Pareto-frontier solutions, some results are very dif-

ferent from the others, with three or more residues having

different assignments. NSGA-II appears to be less efficient

in finding all these divergent solutions when they have

equal merit, while the combination algorithm, by incor-

porating a MC search, overcomes this limitation and finds

the largest number of Pareto-frontier solutions among the

three methods.

Figure 8 shows that the three methods predicted

ambiguous assignments for similar residues. The common

ambiguous residues include G14, L38, G48, A53, A71, and

L83. The 15N chemical shifts of G14–M15 are very similar

to those of G48–L49, making the G14 and G48 assignments

interchangeable. For the same reason, the assignment of

L38 (L38–V39) and L83 (L83–L84) are ambiguous. The
13C chemical shifts of residues A53 and A71 overlap nearly

completely, and their neighboring residues also have similar
15N chemical shifts (A53–M54 and A71–R72), which

resulted in a 50 % assignment probability for each residue.

Additional ambiguities in the MC/SA assignment and the

combination assignment result from the presence of several

identical residue pairs, such as S5–L6, S24–L25, and S86–

L87 (Table S8).

HNP-1

The above test cases used literature chemical shifts that

have been randomly modified and partially deleted. To test

the assignment programs starting from manual peak pick-

ing, we used the 3D NCOCX and NCACX spectra of HNP-

1, a human antimicrobial protein (Zhang et al. 2010).

Soluble HNP-1 has typical linewidths of *0.5 ppm for 13C

and *1 ppm for 15N, which are intermediate between the

linewidths of the most crystalline proteins and the most

disordered proteins. Manual peak picking gave 27 peaks in

the NCACX list and 25 peaks in the NCOCX list (Table

S7). Chemical shifts from 2D CC and 3D CCC spectra,

which were also used in the original manual assignment (Li

et al. 2010), are not consulted in creating the peak lists. In

addition, a small number of chemical shifts do not match

well between the two 3D NCC spectra, which would cause

edge assignments. These imperfections are intentionally

left in the peak lists in order to test the robustness of the

three assignment algorithms.

Figure 9 compares the assignment results of the three

methods. MC/SA found 100 valid results, among which 52

are distinct, while NSGA-II and the combination algorithm

found 100 and 84 Pareto-frontier solutions, respectively.

All three methods indicate significant numbers of residues

with ambiguous assignment, but MC/SA showed the

highest ambiguity: only 14 and 16 peaks were assigned

with [90 % probabilities (Table 5), while the two NSGA-

II based algorithms predicted 20–25 peaks with [90 %

probabilities. Among the high-probability predictions, the

Table 4 Assignment results of truncated rhodopsin using the three algorithms

Method # of evaluated results Ng Nb Ne Nu S0 # of results # of distinct

solutions

MC/SA 100 valid results (out of 100 runs) 164 0 10 169 1,779 90 23

163 0 10 168 1,768 1 1

163 0 12 169 1,763 4 4

162 0 12 168 1,752 5 5

NSGA-II 8 Pareto-frontier results (out of 100 valid results) 164 0 10 169 1,779 8 8

NSGA2/MC 24 Pareto-frontier results (out of 100 valid results) 164 0 10 169 1,779 24 24

S0 is calculated using Eq. (5). Bold indicates rows that contain the true assignment
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fraction of correct assignment, by comparison with the

manual assignment, was high (92–100 %) for all methods:

the correctly assigned peaks among the high-probability

predictions are 14 and 15 for MC/SA and 20–23 for the two

NSGA-II methods. Interestingly, this investigation sug-

gests that the original manual assignment (Zhang et al.

2010) may be ambiguous at the C5–R6 junction because of

the high number of Cys residues (6) in this small protein

(30 residues). Thus, a few ‘‘mis-assignments’’ by the

computational algorithms may actually be correct or at

least cannot be definitively shown to be wrong. If we

consider the most probable predictions for all residues, then

the number of correctly assigned residues increases to 24

and 25 for MC/SA, which is comparable to the numbers of

correctly assigned residues by the two NSGA methods

(Table 5). However, for de novo assignment, assignment

probability will be the only indicator of the reliability of

the assignment, thus the low probabilities of the MC/SA

predictions are detrimental. This limitation is traced to the

suboptimal balance between multiple criteria in the single-

score optimization. Table 6 indicates that MC/SA kept

many solutions with low Ne but also low Ng and Nu values,

while the two NSGA methods retained some higher-Ne

solutions because they also have high Ng and Nu values,

which gave better predictions of the truly ambiguous

residues. Thus, the attempt to reduce the edge number

again interferes with high-quality assignment, similar to the

case of GB1 with random and independent deletions.

Computation times

These assignments were run on a 2.9 GHz Intel Core i7

MacBook Pro laptop computer with 8 GB of memory. The

computation time of MC/SA mainly depends on the num-

ber of simulated-annealing steps NS and the number of

attempts per step Na, while the size of the protein has little

effect. For NSGA-II, the number of generations, the protein

size, and the group number all have significant influences

on the computational time. Table 7 shows that for a short

sequence such as HNP-1, a full NSGA-II run took only

9 min, while for the 98-residue truncated rhodopsin, the

computational time rose to 19 min.

For moderate-sized proteins, NSGA-II is faster than

MC/SA because the former is a multi-thread algorithm

while MC/SA is single-threaded. In NSGA-II, all group

members evolve and optimize together, thus speeding up

the convergence. However, for longer sequences, NSGA-II

requires more computer memory, since NSGA-II is

designed to search for different results. Whenever a new

solution is generated, the program must compare it with all

Fig. 8 Resonance assignment of the first 98 residues of sensory

rhodopsin. a, c, e NCACX dataset. b, d, f NCOCX dataset. a, b MC/

SA generated 100 valid results containing 33 distinct solutions. c,

d Modified NSGA-II generated 8 Pareto-frontier solutions. The two

methods showed similar accuracy. e, f Combination NSGA-II/MC

found 24 Pareto-frontier solutions, thus showing the highest diversity

among the three methods
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other solutions. The time cost of this step depends on the

sequence length and the group size, hence the NSGA-II

computation time increases more rapidly with the sequence

length than MC/SA.

Conclusion

The analysis shown here indicates that for high-quality

protein chemical shift datasets such as GB1 with consec-

utive deletion of residues and HET-s, both MC/SA and the

modified NSGA-II predict the assignment similarly accu-

rately. However, when a significant number of peaks are

missing from the spectra, the chemical shifts deviate

between spectra, and the protein sequence is long and thus

contains multiple identical residue pairs, the modified

NSGA-II and the combination algorithm find more diverse

assignments than MC/SA and have better predictive pow-

ers about the residues with ambiguous assignments. The

high probabilities for the correctly assigned residues are

important for identifying core domains in proteins that can

be unambiguously assigned. The better performance of

NSGA-II results from the fact that the multi-objective

optimization strategy is able to identify and discard inferior

(although valid in a limited sense, i.e. Nb = 0) solutions by

not relying on weighting factors, which cannot be opti-

mized since the type of spectral imperfection is difficult to

know prior to complete assignment. We find the weighting

Fig. 9 Resonance assignment of HNP-1. a, c, e NCACX data. b, d,

f NCOCX data. a, b MC/SA found 100 valid assignments containing

52 distinct solutions. c, d Modified NSGA-II found 100 Pareto-order-

1 results. e, f Combination NSGA-II/MC produced 84 Pareto-order-1

results. All three methods show ambiguous predictions, but more

residues are correctly predicted with high ([90 %) probabilities by

NSGA-II and the combination algorithm than by MC/SA

Table 5 Number of high-

probability assigned residues

and correctly assigned residues

of HNP-1 using the three

algorithms

Method # of assignments

with [90 %

probabilities

# of correct assignments

within the [90 %

probability solutions

# of correct assignments

within the most

probable predictions

MC/SA 14 in NCACX

16 in NCOCX

14 in NCACX

15 in NCOCX

25 in NCACX

24 in NCOCX

NSGA-II 20 in NCACX

23 in NCOCX

20 in NCACX

21 in NCOCX

27 in NCACX

24 in NCOCX

NSGA-II/MC 22 in NCACX

25 in NCOCX

21 in NCACX

23 in NCOCX

25 in NCACX

23 in NCOCX
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factor for the edge assignment can be especially influential

to the assignment outcome: both the case of GB1 with

random and uncorrelated deletion and the HNP-1 case

indicate that edge peaks should not be overly penalized.

Since edge assignments can be justified for some spectra

but reflect poor assignment for others, multi-objective

optimization is the only approach to handle edges

appropriately.

When there are many equally good assignments that are

quite different, as in the case of sensory rhodopsin, MC/SA

can be more efficient in finding these results than the

modified NSGA-II. In this case, the combination NSGA-II/

MC algorithm overcomes the limitation of NSGA-II and is

found to be best among the three algorithms.

Other than protein motion and resonance overlap

induced by conformational heterogeneity, another cause of

assignment ambiguity is the existence of the same residue

pairs, which tend to cause multiple possible assignments, as

seen in sensory rhodopsin. Thus, not surprisingly, proteins

that contain repetitive stretches of sequences are inherently

difficult to assign. Even when two residue pairs are not the

same, as long as the 15N chemical shifts of residues k and

k ? 1 are similar to those of residues p and p ? 1, and the

residue type of k and p are the same, then the assignments of

residues k and p are still interchangeable, if only NCACX

and NCOCX spectra are used. This degeneracy can be

removed if additional 3D spectra such as CONCX are

measured.

Overall, the combination NSGA-II/MC algorithm shows

the most stable and best performance in all three most

challenging datasets (GB1 with random and uncorrelated

peak deletion, sensory rhodopsin and HNP-1). Thus we

expect the combination algorithm to be the most promising

to apply to de novo assignment of structurally unknown

proteins.

The multi-objective optimization strategy shown here

can be applied to other automated assignment programs to

improve their performances. For example, the ssFLYA

program (Schmidt and Guntert 2012) evaluates assignments

in terms of the completeness and the chemical shift values

with respect to given shift statistics. These attributes are

combined with weighting factors into a scoring function. A

multi-objective optimization strategy should also be useful

for this ssFLYA algorithm by finding a more complete set

of Pareto frontiers with the optimized attribute values.
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Bertini I, Bhaumik A, De Paëpe G, Griffin RG, Lelli M, Lewandow-

ski JR, Luchinat C (2010) High-resolution solid-state NMR

structure of a 17.6 kDa protein. J Am Chem Soc 132:1032–1040
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